Acceleration mechanisms in graphics frameworks for User Interface design
Published on Electronic Component News (http://www.ecnmag.com)

Acceleration mechanisms in graphics frameworks
for User Interface design

Jithu Niruthambath and Prabindh Sundareson, Texas Instruments

User Interfaces (Uls) have transformed
from plainly encapsulating the functionality of a device to capturing the intent of
user operations and optimizing the overall control flow. Depending on the end
application, the appearance of Uls can range from simple clickable rectangles to
photo-realistic, physically modeled objects. Uls also need to cater to different
resolutions from small liquid crystal display (LCD) screens to external high-definition
(HD) monitors.

Gauging the performance of an User Interface

Performances of Uls are measured by how fast the framework responds to user
commands and completion speed of the operation. Typical response time
requirements are in the sub-100 millisecond range when text and other 2D
elements are on a screen.

Given these requirements, it is important for framework developers to separate the
visual aspects from the backend rendering elements of the framework. Proprietary
software frameworks have given way to Uls built on open and open-source
frameworks such as Android, Qt, Flash, HTML5, among others [1,2]. These
frameworks abstract the visual presentation from the functionality of the framework
and low-level rendering.

Semiconductor vendors such as Texas Instruments (Tl) offer high performance
processors with ARM Cortex-A cores and advanced graphics capabilities to
accelerate Ul performance.

Page 1 of 3



Acceleration mechanisms in graphics frameworks for User Interface design
Published on Electronic Component News (http://www.ecnmag.com)

Acceleration “fast-paths” are provided by two mechanisms in current frameworks:

1. Utilizing a NEON coprocessor for acceleration of floating point-operations
(involved in blending, resizing and rotation operations),
2. Using OpenGL ES 2.0 API for 2D and 3D acceleration.

The NEON coprocessor from ARM is useful in cases where there is enough ARM
performance available to support rendering operations. The Pixman application
programming interface (API) [3], for example, provides a low-level API that is easy
to integrate.

OpenGL ES 2.0 is a more complex-state, machine-based APIl. OpenGL ES 2.0 offers
flexibility to create special effects in 3D, as well as accelerate standard 2D raster
operations. Standard 2D operations are mapped through texturing operations,
clipping and blending, but operations like live texture updates are inefficient in the
standard frameworks using APIs like glTexImage2D. These use-cases are
encountered in applications such as live update of camera feeds in video
surveillance

These special use-cases are handled with OpenGL ES extensions that can be

queried for availability by the Ul framework. If the extension is not available, a “slow-
path” backup is taken. In order to facilitate easy usage of these extensions,
processor vendors like Tl provide complete example code, along with
demonstrations that showcase these capabilities in Android, Qt and other
frameworks.

Summary

As Uls requirements grow to be more complex, it is necessary for software
developers to understand the fast and slow paths within standard frameworks
based on the underlying capabilities of the processor. Equipped with a better
understanding of software, tools, acceleration mechanism and specific extensions,
developers are empowered to evaluate and optimize performance of Uls.

References

1. Qt for Tl platforms - http://processors.wiki.ti.com/index.php/Building Qt [1]
2. Android for Tl platforms - http://code.google.com/p/rowboat/ [2]

3. Pixman API - http://cqit.freedesktop.org/pixman/ [3]

4. GLES Extensions for image streaming -
http://processors.wiki.ti.com/index.php/OpenGLES Texture Streaming - bc-
cat User Guide [4]

Source URL (retrieved on 07/10/2014 - 1:08pm):
http://www.ecnmag.com/articles/2011/02/acceleration-mechanisms-graphics-
frameworks-user-interface-design?qgt-video_of the day=0

Links:
[1] http://processors.wiki.ti.com/index.php/Building_Qt
[2] http://code.google.com/p/rowboat/

Page 2 of 3


http://processors.wiki.ti.com/index.php/Building_Qt
http://code.google.com/p/rowboat/
http://cgit.freedesktop.org/pixman/
http://processors.wiki.ti.com/index.php/OpenGLES_Texture_Streaming_-_bc-cat_User_Guide
http://processors.wiki.ti.com/index.php/OpenGLES_Texture_Streaming_-_bc-cat_User_Guide
http://www.ecnmag.com/articles/2011/02/acceleration-mechanisms-graphics-frameworks-user-interface-design?qt-video_of_the_day=0
http://www.ecnmag.com/articles/2011/02/acceleration-mechanisms-graphics-frameworks-user-interface-design?qt-video_of_the_day=0

Acceleration mechanisms in graphics frameworks for User Interface design
Published on Electronic Component News (http://www.ecnmag.com)

[3] http://cgit.freedesktop.org/pixman/

[4] http://processors.wiki.ti.com/index.php/OpenGLES_Texture_Streaming_- bc-
cat _User _Guide

Page 3 of 3



