
Managing Loops and Data Synchronization Are Keys to Successful Parallelization
Published on Electronic Component News (http://www.ecnmag.com)

Managing Loops and Data Synchronization Are
Keys to Successful Parallelization
 Bryon Moyer, Vector Fabrics, www.vectorfabrics.com

Parallelization of a program is simple in concept but can be
more complex in actual implementation. It also depends on the application. Some
applications lend themselves to parallelization more than others. Good examples
are those that employ a high proportion of individual computational tasks. These
can often be found in factory automation applications where a mechanical action is
dependant on the recognition of an image. Likewise, CCTV applications can employ
fairly complex algorithms to detect and differentiate movements of people and
vehicles.

In practice, parallelization always involves loops in one way or another. While it is
theoretically possible for an algorithm to involve multiple independent long chains
of calculations that don’t involve loops, it’s highly unlikely in real life.

The loops involved may result from algorithmic requirements – for example, the
traversing of matrices; they may come from the need to process more data than
can be acquired from a single operation, such as reading and processing all of the
data in a file; or they can result from a task processor that must repeatedly check
whether there is data that needs to be worked, such as a packet processor looking
for new packets that have arrived on the network.

It is the repetitive nature of loops that takes what appear to be small tasks and
repeats them so many times that they accumulate to a large compute load. It is for
this reason that loops are typically of interest when finding ways to parallelize a
program to share the load over multiple processing units.

There are two fundamental ways to parallelize data: through fork/join configurations
or through loop distribution. Theoretically, using fork/join to parallelize doesn’t
require a loop, but, in practice, it only makes sense when done inside of a loop so
that the savings accrue over all of the loop iterations.

Fork/Join
With fork/join parallelization, two (or more) tasks are spawned to run in parallel
within one iteration of a loop. Such parallelization is most effective if the tasks are

Page 1 of 8

Managing Loops and Data Synchronization Are Keys to Successful Parallelization
Published on Electronic Component News (http://www.ecnmag.com)

balanced in compute load (Figure 1). If not, then the faster tasks end up waiting for
the longest task to complete (Figure 2).

For standard sequential C programs, it is simplest if there is no need to
communicate data between the tasks. Unfortunately, this scenario is not common
enough to handle most parallelization requirements.

Page 2 of 8

Managing Loops and Data Synchronization Are Keys to Successful Parallelization
Published on Electronic Component News (http://www.ecnmag.com)

Loop Distribution
When a single iteration of a loop involves a large amount of computing, it is
common to split the loop into two (or more) tasks and assigning them to different
processors. In the case of two tasks, the second half of the task cannot start until
the first half has completed, but once the second half starts, the first half can start
on its next iteration while the second task finishes the first iteration. Effectively, the
first task gets part of the work done and then hands it off to the second task. In the
hardware world, this is known as “pipelining.” However, in theory, if the second half
were completely independent of the first half, not relying on any data generated in
the first half, then it could start immediately, as in Figure 3, with no (or negligible)
added latency.

Loop distribution requires attention to where the loop body is split. If data is
produced before the split and consumed after the split, then that data must be
communicated – or synchronized – between tasks after the loop is distributed. The
second part of the loop can’t start until all the necessary data is available, adding
some latency. This is shown in Figure 4, with the “P” triangles indicating data
production and the “C” triangles indicating data consumption.

Page 3 of 8

Managing Loops and Data Synchronization Are Keys to Successful Parallelization
Published on Electronic Component News (http://www.ecnmag.com)

Loops can be completely parallelized by a combination of unrolling and distribution.
Loop unrolling refers to taking the loop body and explicitly duplicating it within the
loop, reducing the number of loop iterations accordingly. For example, if a loop has
16 iterations and you unroll four times, then the loop body now has four explicit
copies of the original loop body, meaning the resulting loop only executes four
times, as shown in Figure 5.

Page 4 of 8

Managing Loops and Data Synchronization Are Keys to Successful Parallelization
Published on Electronic Component News (http://www.ecnmag.com)

As an example of loop parallelization, two processors can split up the number of
loop iterations by unrolling once and then distributing. In this way, the first
processor takes the odd iterations and the second processor takes the even ones;
this is illustrated in Figure 6.

Page 5 of 8

Managing Loops and Data Synchronization Are Keys to Successful Parallelization
Published on Electronic Component News (http://www.ecnmag.com)

If the loop is completely unrolled and there are as many processors as iterations,
then all iterations can be executed in parallel.

Loop-carry Dependencies and Synchronization
The degree of parallelization possible depends on how data needs to be
communicated between iterations. This is the same synchronization issue as
discussed for simple loop distribution, only applied to unrolled loops, where each
copy of the loop body represents an iteration of the original loop. Dependencies
between one loop iteration and another are referred to as loop-carry dependencies.
Loop-carry dependencies require synchronization if parallelizing across them.

Synchronization involves the communication of data from one task to another.
There are a variety of ways to implement it – including dedicated hardware – so
there is no one right or wrong way. Each carries a level of overhead that may be
high or low, a consideration to be taken into account when making parallelization
choices.
Depending on the program, synchronization might happen more or less frequently.
Higher frequency indicates a higher level or “granularity” of parallelization;
infrequent synchronization indicates “chunkier” parallelization.

For example, if a simple loop is distributed and a single value is calculated that
must be synchronized, then synchronization will occur with each loop iteration for a
small piece of data (Figure 7).

Page 6 of 8

Managing Loops and Data Synchronization Are Keys to Successful Parallelization
Published on Electronic Component News (http://www.ecnmag.com)

Nested loops provide a counter-example. If the loop being distributed contains two
loops, one generating data and one consuming the generated data, and if the loop
is split between those two inner loops, then one task will produce a number of data
points; the other task will consume them.

Synchronization will not occur until the entire inner loop has finished generating
data. So if the inner producing loop in the first task iterates 16 times and fills an
array with 16 values, then synchronization will transfer those 16 values to the
second task, whose inner loop will then iterate 16 times to read them (Figure 8).

Page 7 of 8

Managing Loops and Data Synchronization Are Keys to Successful Parallelization
Published on Electronic Component News (http://www.ecnmag.com)

To the extent that one task is waiting on another for data, the more data
transferred at a time, the longer the waiting task has to sit around until the data is
ready. So more things can be done in parallel more quickly if data is transferred
smaller chunks at a time.

However, synchronization does involve some overhead. The overhead may be as
small as a simple indicator that data is available, or may involve locking and
unlocking data structures and copying data. This overhead directly leads to the
latency introduced by parallelization. Therefore, the more overhead there is for
each synchronization, the more data you want to transfer in each synchronization. If
you have zero to little overhead, then data can be synchronized more frequently
with less penalty.

The dependency properties include the number of synchronizations (“syncs”) and
the amount of data per synchronization. Multiplied together, these give you the
total data synchronized.

In general, given various parallelization choices, it’s better to transfer less data than
more. In a tie, there’s a tradeoff between the latency introduced by doing fewer
synchronizations with more data each time and the overhead introduced by doing
more synchronizations with less data each time. When you explore the different
ways you can partition your program,

Until recently, attempting to identify potential ways to parallelize an application has
required a huge amount of time. However, new cloud-based tools, such as vfAnalyst
from Vector Fabrics, are making this onerous task much easier. By uploading your
source code to the cloud service the tools can quickly identify the areas most likely
to benefit from parallelizing. vfAnalyst for example, presents this visually and aids
developers focus their efforts on the sections that will give a performance
improvement rather than those parts of the application that cannot be parallelized.

Source URL (retrieved on 07/25/2014 - 7:44pm):
http://www.ecnmag.com/articles/2011/01/managing-loops-and-data-synchronization-
are-keys-successful-parallelization?qt-video_of_the_day=0&qt-recent_content=0

Page 8 of 8

http://www.ecnmag.com/articles/2011/01/managing-loops-and-data-synchronization-are-keys-successful-parallelization?qt-video_of_the_day=0&qt-recent_content=0
http://www.ecnmag.com/articles/2011/01/managing-loops-and-data-synchronization-are-keys-successful-parallelization?qt-video_of_the_day=0&qt-recent_content=0

