Subscribe to ECN Magazine Articles
View Sample

FREE Email Newsletter

ECN Daily

Cover Story: High-Performance Motion Control

August 27, 2008 5:31 am | Comments

Networks Take High Performance Motion Control to the Next Level Networks simplify software development, axis coordination, code updates, and system characteristics.

Brainstorm: Designing New Technology

August 26, 2008 10:01 am | Comments

What are the most important factors to consider when developing a new product?


Industry Focus: Taking Advantage of Power Conditioning

August 20, 2008 10:49 am | Comments

Power has the essential role in the operation of a factory since no machinery can run without it, but power isn’t a guarantee. Companies performing industrial automation lose up to millions of dollars and hours of production time annually due to power anomalies. There are two types of power anomalies: natural phenomena which are harder to control and internal anomalies which are easier to control.


It’s a small, green world at Sensors Expo

August 6, 2008 1:00 pm | by Chris Warner, Executive Editor | Comments

“Can you stand another ZigBee presentation?” was the greeting I received from one of the many exhibitors I met at the 2008 Sensors Expo in Rosemont, IL. Indeed, wireless industrial networking devices were in abundance at this year’s show, along with what seemed like an increasing amount of companies presenting MEMS-based devices.


Semiconductor Highlight: Designing with CPLDs

August 6, 2008 11:55 am | by Gordon Hands, Lattice Semiconductor | Comments

Many designs require a small amount of high-speed, instant-on programmable logic. These designs drive the thriving market for Complex Programmable Logic Devices (CPLDs). This article examines the definition of CPLDs, their applications, design methodologies and which factors to consider when selecting a CPLD.


Developing Comprehensive, Cost-Effective Hardware and Software Solutions for the Cardiac Device Market

August 6, 2008 10:46 am | by Jose Villasenor Fernandez, M.D., Global Medical Applications Specialist, Freescale Semiconductor and David Niewolny, Medical Product Marketing Manager, Freescale Semiconductor | Comments

According to the World Health Organization, cardiovascular disease is the leading cause of death globally. An estimated 17.5 million people died from cardiovascular disease in 2005, representing 30 percent of all global deaths. Of these deaths, 7.6 million were due to heart attacks, and 5.7 million were due to stroke. By 2015, an estimated 20 million people will die from cardiovascular disease every year, primarily from heart attacks and strokes. Many of these deaths may occur with no previous symptoms of cardiovascular disease.


Embedded Systems: The 16-to-32-Bit Migration Gets Smoother(2)

August 4, 2008 12:30 pm | by Jon Titus, Senior Technical Editor | Comments

At one time, the gulf between 16- and 32-bit processors seemed wide and deep, so engineers had a difficult time making the transition from one realm to the other. Many processor manufacturers have helped eliminate that gulf and many development boards and tools simplify the migration between those realms.


Tools and Techniques Surmount the Multi-core Challenge

August 4, 2008 11:15 am | by Jon Titus, Senior Technical Editor | Comments

Multi-processor computers have existed for some time, but only within the last few years have engineers had the opportunity to buy off-the-shelf chips with more than one processor or "core." These devices come in two varieties; symmetrical and asymmetrical. The first group provides multiple "clones" of the same core CPU, thus the term symmetrical. The second group includes devices that put different types of CPUs, DSPs, and accelerators in a system on a chip. I'll concentrate on the former multi-core technologies.


Semiconductor Highlight: Using A Current Monitor

July 28, 2008 10:01 am | by Peter Abiodun A. Bode, Senior Applications Engineer, Zetex Semiconductors | Comments

Traditionally, precision full wave rectifiers1 used in a range of instrumentation applications have employed between 7 and 9 discrete circuit components.  These are typically 2 op-amps, 2 diodes and 3 to 5 resistors.  This article will show that an alternative approach, using a standard current monitor IC, reduces the component count to just five and greatly simplifies circuit configuration and produces a more elegant overall solution.


Industry Focus: Defining Distributor Design

July 28, 2008 9:10 am | by Chris Keuling, Associate Editor | Comments

The electronics distributor plays an important role in the electronic components industry, selling engineers the components and subsystems they need to use in their designs. A growing number of distributors also provide value-added services such as design support to their customers. With the combined pressure of the shrinking design cycle and expanded technology availability, it’s important for engineers to be able to talk to someone who can help them throughout the design process. We recently cold-called a number of major distributors without identifying ourselves as press and simply asked what design services they perform.


Moving forward

July 28, 2008 7:30 am | by Alix Paultre, Editor in Chief | Comments

Change is a key word in our industry. Technology has progressed so far so fast it is amazing to see how far we have come in such a relatively short time. We are swept downstream in the relentless river of development, buffeted by currents from so many quarters the pattern seems random. Disruptive technologies shove us in one direction as convergence tips us in another...


Design Talk: Technology Solutions

July 28, 2008 6:30 am | Comments

Failures of semiconductor ICs are typically due to overvoltage or overcurrent for a given junction temperature. This overvoltage can be caused by an external factor or an uncontrolled switching inductance. The overcurrent failure can be caused by excess junction temperature due to excessive power losses and a poor thermal path or an abnormal load current. It is typical for a failure report to state Electrical Over Stress(EOS).


Cover Story: Design Tips Cut FPGA Power Use

July 24, 2008 12:10 pm | Comments

Overall, the latest generations of FPGAs provide the performance engineers need for new designs. And FPGA vendors complement performance with power-saving techniques. In many cases, FPGA design tools consistently aim to implement low-power circuits, but engineers can select performance vs. power tradeoffs as well. Most of those low-power changes occur within the design tools and do not cause engineers to rework their code. But before anyone tries to reduce power, they must understand where the power gets burned. It makes no sense to reduce power consumption in an area that doesn’t burn that much power to begin with.


Brainstorm: Next Generation Displays

July 8, 2008 5:14 am | Comments

What technology trends do you feel will dominate the development of next-generation displays?


SMH: Wringing the Power Consumption Out of That FPGA

July 2, 2008 11:24 am | Comments

Computationally intensive DSP functions often require hardware acceleration. Increasingly, designers are implementing their DSP algorithms in FPGAs because they offer better performance than DSP processors. Benchmarks show that FPGAs execute turbocoding, GPS correlation, H264 and other DSP functions much more quickly than DSPs.



You may login with either your assigned username or your e-mail address.
The password field is case sensitive.