Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • EE Resources
    • DesignFast
    • Ebooks / Tech Tips
    • FAQs
    • LEAP Awards
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars
    • White Papers
  • Lee’s Teardowns
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • EE Videos
    • Avnet Video
    • EPCOS TDK Videos
    • Teardown Videos
    • TI Videos
  • EE Classrooms
    • Grid Infrastructure
    • Aerospace & Defense
    • Building Automation
    • Power Delivery
    • Factory Automation
    • Motor Drives
    • Medical Technology

A Better Battery: One-Time Pollutant May Become Valued Product To Aid Wind, Solar Energy

October 18, 2016 By Oregon State University

Chemists at Oregon State University have discovered that one or more organic compounds in a family that traditionally has been known as pollutants could offer an important advance to make cheap, reliable batteries.

Such batteries might be of particular value to store electricity from some clean energy systems. The inability to easily and cheaply store energy from the wind and sun, which is highly variable and intermittent, has been a key constraint to wider use of those forms of energy.

Although pumped hydro systems or compressed air facilities comprise almost all of the alternative energy storage capacity of this type, they have limitations. There is a tremendous demand, scientists say, for energy storage solutions that are modular and particularly suited to community storage, “smart grid” and micro-grid uses.

A new advance, published in ACS Energy Letters, has shown that at least one, and probably more compounds known as polycyclic aromatic hydrocarbons, or PAHs, can function as a potentially low-cost, long-lasting and high-performance cathode in “dual-ion” batteries.

Such batteries would contain a carbon electrode as the anode and solid PAH as the cathode, with no need for the rare or costly metal elements now usually used.

Traditionally thought of as pollutants, PAHs are usually products of combustion – anything from a campfire to an automobile exhaust or coal-burning power plant — and pose significant concerns as toxins and carcinogens, often when inhaled.

But in this study, scientists found that at least one PAH compound called coronene, in a safe, crystallized solid form, makes a high-functioning electrode material with promising characteristics in dual-ion batteries.

“Prior to this work, PAHs were not considered stable when storing large anions,” said Xiulei (David) Ji, an assistant professor of chemistry in the OSU College of Science, and recipient of a 2016 National Science Foundation CAREER Award, the most prestigious award for junior faculty.

“We found that coronene crystalline solid, a PAH, can lose electrons and provide a good capacity of anion storage while being structurally and chemically stable. Coronene had good performance as an electrode and the ability to have a very long cycle life, or the number of charges and discharges it can handle.”

Avoiding the use of metals in the electrodes is a huge advantage for dual-ion batteries and makes them much more sustainable, Ji said. Graphite cathodes can do this, but a serious challenge that has held them back for two decades is that they operate at levels hostile to the non-aqueous solvents in the electrolyte. The batteries based on coronene largely eliminate this problem, and would significantly improve the maintenance cost and sustainability of a stationary battery system.

The researchers in this study demonstrated the potential of coronene, but also said that other PAH compounds as well may have similar potential.

This research opens the door to an entirely new concept in battery construction, they said, which might take what had once been an unwanted pollutant and turn it into a safe, valued product.

Primary collaborators on this project in OSU’s Department of Chemistry included lead author and graduate student Ismael Rodriguez-Perez, and professors Michael Lerner and Rich Carter.

Filed Under: Power Electronic Tips

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Featured Resources

  • CUI Inc. CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure

Autonomous & Connected Vehicles 2019


RSS Current EDABoard.com discussions

  • TSMC65nm Bondpads and ESD.
  • Beginner question about a micro-controller project
  • Metastabilty and data loss
  • Connect MQ135 Gas Sensor to Raspberry Pi 3B+
  • Distance between MCU-Phy-Magnetics-RJ45

RSS Current Electro-Tech-Online.com Discussions

  • Esp8266 crashing after 30 mins
  • Counter 0 - 999 with flip flops
  • Long delay affected by low temperature?
  • possible 1N007 fault
  • Funny Images Thread!

Oscilloscopes Product Finder

Follow EE World on Twitter

Tweets by @EEWorldOnline
EE World Online

EE WORLD ONLINE NETWORK

  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analog IC Tips
  • Connector Tips
  • Engineer's Garage
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on Twitter@eeworldonline
Add us on FacebookEE World Online
Follow us on YouTube YouTube
Add us on Facebook Instagram

Copyright © 2019 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy